
Отладочная плата SK-iMX53 Инструкция пользователя

SK-iMX53:

FreeScale iMX536 (ARM Cortex-A8 1000МГц)

DDR3 512Мбайт (128Мх32)

SLC NAND Flash 256Мбайт

Ethernet 100/10M

Audio CODEC вход/выход

Audio SPDIF выход

uSD разъем

SATA разъем

USB Host/Device

USB Host

RS232

CAN PHY

RTC (часы реального времени), держатель батареи 1220

Разъемы расширения

Система питания

Обращаем внимание!!! Предыдущий вариант платы (V2) содержал DDR2 динамическую память объемом 256МБайт

Возможность прямого подключения:

SK-TFT1024x768TP-Plug или аналог — модуль расширения 8" LCD TFT панели с сенсорным экраном

SK-TFT1024x768-Plug или аналог – модуль расширения 8" LCD TFT панели

SK-ATM0700D4-Plug или аналог — модуль расширения 7" LCD TFT панели с сенсорным экраном

SK-HDMI-Plug – плата расширения HDMI выхода

SK-SIMCOM-Plug – плата расширения GSM/GPS/3G модулей

Комплект поставки: отладочная плата SK-iMX53, USB-A-USB-A кабель, RS232 кабель, ссылка для скачивания необходимых материалов

www.starterkit.ru 426000, Россия, г.Ижевск, ул.Телегина д.30 тел.(3412)478-448, +79226802173, +79226802174 Отладочная плата SK-iMX53

e-mail: info@starterkit.ru

1. Общие характеристики

- Напряжение питания: 5-6В (центральная жила разъема), 6В максимум в следующих случаях:
 - 1) при использовании USB
 - 2) при совместном использовании SK-ATM0700D4-Plug или SK-TFT1024x768TP-Plug
 - 3) при питании внешнего SATA HDD от разъема платы
- Потребляемый ток платы до 1A, следует учитывать потребление подключаемой внешней периферии.
- Габариты 138х64х20мм

2. Назначение джамперов

1-ый вывод перемычек и переключающих перемычек помечен квадратной контактной площадкой.

- J1 позволяет выбирать какой из сигналов (VS или FIELD) будет использован модулем CSI в качестве синхросигнала кадровой развертки
- J2 разъем для подключения питания SATA HDD
- J3 штыревой разъем для подключения линии CAN интерфейса
- J4 позволяет подключить согласующий резистор к CAN линии
- J5,J6 определяют функцию разъема X4, положение 1-2 выход на наушники, 2-3 микрофонный вход
- J7 позволяет исключить NAND Flash из системы, актуально для загрузки по USB
- J11 позволяет управлять уровнем ID сигнала для USB-OTG
- J12 позволяет подключить питание к USB разъему X15 минуя транзисторные каскады управления
- J13 позволяет подключить питание к USB разъему X16 минуя транзисторные каскады управления, следует учесть дальнейшее наличие в цепи J14
- J14 управляет подачей питающего напряжения к X16, ВНИМАНИЕ!!! В режиме работы порта как Device (например, при USB загрузке) должен быть разомкнут По умолчанию замкнуты перемычки: J4, J5 и J6 положение 1-2, J7

3. Начало работы

Перед началом работы убедитесь в положении джамперов (см. выше), так же следует ознакомиться со всеми материалами имеющих статус «Важная тема» или «Объявление» на форуме starterkit.ru в разделе "Отладочные платы > SK-iMX53"

Подключите RS232 кабель, идущий в комплекте, к COM порту PC (или USB-COM преобразователю), настройте терминальную программу на используемый COM порт с параметрами 115200 без управления потоком.

Подключите сетевой (Ethernet) кабель, настройте IP адрес сетевой карты PC в диапазоне 192.168.0.XXX.

Подключите питание, в терминальной программе появятся аналогичные сообщения:

```
U-Boot 2009.08 (Nov 23 2011 - 19:11:25)

CPU: Freescale i.MX53 family 2.1V at 1000 MHz
mx53 pl11: 1000MHz
mx53 pl12: 400MHz
mx53 pl13: 216MHz
mx53 pl14: 455MHz
ipg clock : 66666666Hz
```

```
ipg per clock: 33333333Hz
        uart clock : 6666666Hz
        cspi clock
                                  : 54000000Hz
                                : 133333333Hz
        ahb clock
       axi_a clock : 400000000Hz
axi_b clock : 200000000Hz
        emi slow clock: 133333333Hz
       ddr clock : 400000000Hz esdhc1 clock : 80000000Hz
       esdhc2 clock : 8000000Hz
esdhc3 clock : 8000000Hz
esdhc4 clock : 8000000Hz
        nfc clock
                                · 333333333Hz
        Board: MX53-SK Rev. A
        Boot Reason: [unknown]
        Boot Device: NAND
        DRAM: 256 MB
        NAND: Manufacturer
                                                    : Samsung (0xec)
       Device Code : 0xda
Cell Technology : SLC
                                         : 256 MiB
        Chip Size
        Pages per Block
                                        : 64
        Page Geometry : 2048+64
ECC Strength : 4 bits
ECC Size : 512 B
       Data Setup Time : 20 ns
Data Hold Time : 10 ns
        Address Setup Time: 20 ns
        GPMI Sample Delay : 6 ns
                                          : Unknown
        t.REA
        +RI.OH
                                          : Unknown
        tRHOH
                                          : Unknown
        Description
                                        : K9F2G08U0A
        Bad block table found at page 131008, version 0x01
        Bad block table found at page 130944, version 0x01
        nand read bbt: Bad block at 0x00000bae0000
        256 MiB
        MMC: FSL ESDHC: 0
        Using default environment
                  serial
        Out:
                    serial
        Err:
                    serial
        Net: FEC0 [PRIME]
        Hit any key to stop autoboot: 0
        NAND read: device 0 offset 0x1000000, size 0xa00000
          10485760 bytes read: OK
        ## Booting kernel from Legacy Image at 70800000 ...
              Image Name: linux-2.6
Image Type: ARM Linux Kernel Image (uncompressed)
                                        2455412 Bytes = 2.3 MB
             Data Size:
              Load Address: 70008000
              Entry Point: 70008000
              Verifying Checksum ... OK
             Loading Kernel Image ... OK
        Starting kernel ...
        2009q3-67) ) #253 PREEMPT Sun Nov 27 15:40:20 UTC 2011
        CPU: ARMv7 Processor [412fc085] revision 5 (ARMv7), cr=10c53c7f
        CPU: VIPT nonaliasing data cache, VIPT nonaliasing instruction cache
        Machine: Freescale MX53 LOCO Board
        Ignoring unrecognised tag 0x54410009
        Memory policy: ECC disabled, Data cache writeback
        Built 1 zonelists in Zone order, mobility grouping on. Total pages: 56896
        Kernel command line: noinitrd console=ttymxc0,115200 ubi.mtd=1 root=ubi0:nandfs
          rw rootfstype=ubifs video=mxcdi0fb:RGB888,SK-800x480-LVDS video=mxcdi1fb:RGB888,SK-800x480-LVDS video-mxcdi1fb:RGB888,SK-800x480-LVDS video-mxcdi1
LVDS di0 primary ldb=di0
        PID hash table entries: 1024 (order: 0, 4096 bytes)
Dentry cache hash table entries: 32768 (order: 5, 131072 bytes)
        Inode-cache hash table entries: 16384 (order: 4, 65536 bytes)
        Memory: 224MB = 224MB total
        Memory: 222376k/222376k available, 7000k reserved, 0K highmem
        Virtual kernel memory layout:
               vector : 0xffff0000 - 0xffff1000
fixmap : 0xfff00000 - 0xfffe0000
                                                                                  ( 896 kB)
               DMA
                             : 0xf9e00000 - 0xffe00000
                                                                                  ( 96 MB)
                                                                                 (1624 MB)
( 224 MB)
                vmalloc : 0x8e800000 - 0xf4000000
                lowmem : 0x80000000 - 0x8e000000
                pkmap : 0x7fe00000 - 0x80000000
                                                                                         2 MB)
```

```
modules : 0x7f000000 - 0x7fe00000
                                         ( 128 kB)
      .init : 0x80008000 - 0x80028000
      .text: 0x80028000 - 0x80463000 (4332 kB)
.data: 0x80480000 - 0x804bcc60 (244 kB)
SLUB: Genslabs=11, HWalign=32, Order=0-3, MinObjects=0, CPUs=1, Nodes=1
Hierarchical RCU implementation.
        RCU-based detection of stalled CPUs is disabled.
         Verbose stalled-CPUs detection is disabled.
NR TROS:368
MXC GPIO hardware
MXC IRQ initialized
MXC Early serial console at MMIO 0x53fbc000 (options '115200')
bootconsole [ttymxc0] enabled
Console: colour dummy device 80x30
Calibrating delay loop... 999.42 BogoMIPS (lpj=4997120)
pid max: default: 32768 minimum: 301
Mount-cache hash table entries: 512
CPU: Testing write buffer coherency: ok
regulator: core version 0.5
regulator: dummy:
NET: Registered protocol family 16 i.MX IRAM pool: 128 KB@0x8e840000
IRAM READY
CPU is i.MX53 Revision 2.1
Using SDMA I.API
MXC DMA API initialized
IMX usb wakeup probe
IMX usb wakeup probe
bio: create slab <bio-0> at 0
SCSI subsystem initialized
usbcore: registered new interface driver usbfs
usbcore: registered new interface driver hub
usbcore: registered new device driver usb
IPU DMFC NORMAL mode: 1(0~1), 5B(4,5), 5F(6,7)
Advanced Linux Sound Architecture Driver Version 1.0.23.
Switching to clocksource mxc_timer1
NET: Registered protocol family 2
IP route cache hash table entries: 2048 (order: 1, 8192 bytes)
TCP established hash table entries: 8192 (order: 4, 65536 bytes)
TCP bind hash table entries: 8192 (order: 3, 32768 bytes)
TCP: Hash tables configured (established 8192 bind 8192)
TCP reno registered
UDP hash table entries: 256 (order: 0, 4096 bytes)
UDP-Lite hash table entries: 256 (order: 0, 4096 bytes)
NET: Registered protocol family 1
LPMode driver module loaded
Static Power Management for Freescale i.MX5
PM driver module loaded
sdram autogating driver module loaded
Bus freq driver module loaded
DIO is primary
mxc_dvfs_core_probe
regulator: get() with no identifier
mxc_dvfs_core_probe: failed to get gp regulator
DVFS driver module loaded
i.MXC CPU frequency driver
\verb"regulator: get() with no identifier"
mxc_cpufreq_driver_init: failed to get gp regulator
DVFS PER driver module loaded
msgmni has been set to 434
alg: No test for stdrng (krng)
cryptodev: driver loaded.
io scheduler noop registered
io scheduler deadline registered
io scheduler cfq registered (default)
regulator: get() with no identifier
\mbox{mxc\_ipu} \mbox{mxc\_ipu}: Channel already disabled 9
mxc_ipu mxc_ipu: Channel already uninitialized 9
Console: switching to colour frame buffer device 100x30
mxc_ipu mxc_ipu: Channel already disabled 7
    ipu mxc ipu: Channel already uninitialized 7
mxc_ipu mxc_ipu: Channel already disabled 10
mxc_ipu mxc_ipu: Channel already uninitialized 10
Serial: MXC Internal UART driver
{\tt mxcintuart.0:} ttymxc0 at MMIO 0x53fbc000 (irq = 31) is a Freescale i.MX
console [ttymxc0] enabled, bootconsole disabled
console [ttymxc0] enabled, bootconsole disabled
mxcintuart.1: ttymxc1 at MMIO 0x53fc0000 (irq = 32) is a Freescale i.MX mxcintuart.2: ttymxc2 at MMIO 0x5000c000 (irq = 33) is a Freescale i.MX
mxcintuart.3: ttymxc3 at MMIO 0x53ff0000 (irq = 13) is a Freescale i.MX
mxcintuart.4: ttymxc4 at MMIO 0x63f90000 (irq = 86) is a Freescale i.MX
loop: module loaded
ahci: SSS flag set, parallel bus scan disabled
```

```
ahci ahci.0: AHCI 0001.0100 32 slots 1 ports 3 Gbps 0x1 impl platform mode
ahci ahci.0: flags: ncq sntf stag pm led clo only pmp pio slum part ccc
scsi0 : ahci
atal: SATA max UDMA/133 irq_stat 0x00000040, connection status changed irq 28
MXC MTD nand Driver 3.0
NAND device: Manufacturer ID: 0xec, Chip ID: 0xda (Samsung NAND 256MiB 3,3V 8-bit)
RedBoot partition parsing not available
Creating 2 MTD partitions on "NAND 256MiB 3,3V 8-bit":
0x000000000000-0x000002000000 : "bootloader and kernel"
0x000002000000-0x000010000000 : "nand.rootfs"
UBI: attaching mtd1 to ubi0
UBI: physical eraseblock size: 131072 bytes (128 KiB)
                               129024 bytes
UBI: logical eraseblock size:
UBI: smallest flash I/O unit:
                                 2048
UBI: sub-page size:
                                 512
UBI: VID header offset:
                                 512 (aligned 512)
UBI: data offset:
                                 2048
UBI: attached mtd1 to ubi0
UBI: MTD device name:
                                 "nand.rootfs"
UBI: MTD device size:
                                 224 MiB
                                 1787
UBI: number of good PEBs:
UBI: number of bad PEBs:
UBI: wear-leveling threshold: 409
                                 4096
UBI: number of internal volumes: 1
UBI: number of user volumes:
UBI: available PEBs:
                                 140
UBI: total number of reserved PEBs: 1647
UBI: number of PEBs reserved for bad PEB handling: 17
UBI: max/mean erase counter: 1/0
UBI: image sequence number: 696306421
UBI: background thread "ubi bgt0d" started, PID 467
vcan: Virtual CAN interface driver
Freescale FlexCAN Driver
FEC Ethernet Driver
fec_enet_mii_bus: probed
ehci hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver
fsl-ehci fsl-ehci.0: Freescale On-Chip EHCI Host Controller
fsl-ehci fsl-ehci.0: new USB bus registered, assigned bus number 1
fsl-ehci fsl-ehci.0: irq 18, io base 0x53f80000
fsl-ehci fsl-ehci.0: USB 2.0 started, EHCI 1.00
hub 1-0:1.0: USB hub found
hub 1-0:1.0: 1 port detected
fsl-ehci fsl-ehci.1: Freescale On-Chip EHCI Host Controller
fsl-ehci fsl-ehci.1: new USB bus registered, assigned bus number 2
fsl-ehci fsl-ehci.1: irq 14, io base 0x53f80200
fsl-ehci fsl-ehci.1: USB 2.0 started, EHCI 1.00
hub 2-0:1.0: USB hub found
hub 2-0:1.0: 1 port detected
usbcore: registered new interface driver cdc acm
cdc acm: v0.26:USB Abstract Control Model driver for USB modems and ISDN adapters
Initializing USB Mass Storage driver..
atal: SATA link up 1.5 Gbps (SStatus 113 SControl 300)
usbcore: registered new interface driver usb-storage
USB Mass Storage support registered.
mice: PS/2 mouse device common for all mice
spi0.0 supply vcc not found, using dummy regulator
ads7846 spi0.0: touchscreen, irq 214
input: ADS7843 Touchscreen as /devices/platform/spi gpio.0/spi0.0/input/input0
spi1.0 supply vcc not found, using dummy regulator ads7846 spi1.0: touchscreen, irq 211
input: ADS7843 Touchscreen as /devices/platform/spi_gpio.1/spi1.0/input/input1
spi2.0 supply vcc not found, using dummy regulator
ads7846 spi2.0: touchscreen, irq 166
input: ADS7843 Touchscreen as /devices/platform/spi_gpio.2/spi2.0/input/input2
rtc-ds1307 1-0068: rtc core: registered ds1338 as rtc0
rtc-ds1307 1-0068: 56 bytes nvram
mxc_rtc mxc_rtc.0: rtc core: registered mxc_rtc as rtc1
i2c /dev entries driver
Linux video capture interface: v2.00
mxc v412 output mxc v412 output.0: Registered device video0
usbcore: registered new interface driver uvcvideo
USB Video Class driver (v0.1.0)
MXC WatchDog Driver 2.0
MXC Watchdog # 0 Timer: initial timeout 60 sec
VPU initialized
mxc asrc registered
gpu mmu enabled
mxsdhci: MXC Secure Digital Host Controller Interface driver
mxsdhci: MXC SDHCI Controller Driver.
mmc0: SDHCI detect irq 206 irq 1 INTERNAL DMA
usbcore: registered new interface driver usbhid
usbhid: USB HID core driver
```

```
No device for DAI tlv320aic23
    No device for DAI imx-ssi-1-0
    No device for DAI imx-ssi-1-1
    No device for DAI imx-ssi-2-0
    No device for DAI imx-ssi-2-1
    AIC23 Audio Codec 0.1
         Sound Buffer
                          Allocated: Playback UseIram=1 ext ram=0 buf->addr=f8016000 buf-
>area=8e856000 size=24576
                                                  UseIram=1 ext_ram=1 buf->addr=7d240000 buf-
    DMA Sound Buffer Allocated: Capture
>area=fa8c3000 size=24576
    asoc: tlv320aic23 <-> imx-ssi-2-0 mapping ok
    ALSA device list:
      #0: imx-3stack (tlv320aic23)
    TCP cubic registered
    NET: Registered protocol family 17
    can: controller area network core (rev 20090105 abi 8)
    NET: Registered protocol family 29
    can: raw protocol (rev 20090105)
    can: broadcast manager protocol (rev 20090105 t)
    VFP support v0.3: implementor 41 architecture 3 part 30 variant c rev 2
    rtc-ds1307 1-0068: setting system clock to 2011-11-30 14:49:33 UTC (1322664573) ata1.00: ATA-
8: ST9160314AS, 0010LVM1, max UDMA/100
    ata1.00: 312581808 sectors, multi 16: LBA48 NCQ (depth 31/32)
    ata1.00: configured for UDMA/100
    scsi 0:0:0:0: Direct-Access
                                    ATA
                                               ST9160314AS
                                                                0010 PQ: 0 ANSI: 5
    sd 0:0:0:0: [sda] 312581808 512-byte logical blocks: (160 GB/149 GiB)
    sd 0:0:0:0: [sda] Write Protect is off
    sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
     sda: sda1
    sd 0:0:0:0: [sda] Attached SCSI disk
    UBIFS: mounted UBI device 0, volume 0, name "nandfs"
    UBIFS: file system size: 208373760 bytes (203490 KiB, 198 MiB, 1615 LEBs)
UBIFS: journal size: 10450944 bytes (10206 KiB, 9 MiB, 81 LEBs)
UBIFS: media format: w4/r0 (latest is w4/r0)
    UBIFS: default compressor: 1zo
    UBIFS: reserved for root: 4952683 bytes (4836 KiB)
    VFS: Mounted root (ubifs filesystem) on device 0:10.
    Freeing init memory: 128K
    Init: EXT3-fs: barriers not enabled
    EXT3-fs (sdal): warning: maximal mount count reached, running e2fsck is recommended
    kjournald starting. Commit interval 5 seconds
    EXT3-fs (sda1): using internal journal
    EXT3-fs (sda1): mounted filesystem with writeback data mode
    Starting logging: OK
    Initializing random number generator... done.
    Starting network...
    eth0: Freescale FEC PHY driver [Generic PHY] (mii bus:phy addr=0:01, irq=-1)
    PHY: 0:01 - Link is Up - 100/Full
    Welcome to SK-iMX53
    buildroot login:
```

Что означает, что система успешно загрузилась и готова к работе.

Для входа в консоль введите имя пользователя root, пароль не требуется (других пользователей в системе нет), после чего имеете полный консольный доступ к системе. Так же можно подключиться с помощью Telnet, FTP, HTTP, SSH, Samba, сетевой адрес платы 192.168.0.136. При подключении-отключении USB, uSD карт памяти, они будут автоматически монтироваться-размонтироваться в системе.

Если был подключен SK-ATM0700D4-Plug (к разъему X7), на экране появится графическое изображение.

Если был подключен SK-TFT1024x768TP-Plug (к разъему X6), на экране появится графическое изображение и сообщение о старте системы, при первой загрузке необходимо откалибровать сенсорную панель.

4. Cocтав OC Linux

Ядро 2.6.35.3, включая драйвера:

- Ethernet
- NAND flash
- SATA
- SD-card
- USB-host
- USB-gadget
- LVDS
- 12C
- SPI
- UART
- RTC
- CAN
- WatchDog
- Frame Buffer
- TP ADS7846
- ...

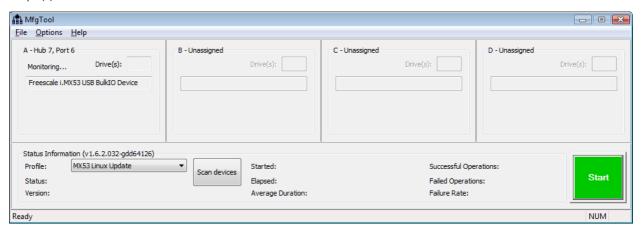
5. Способы загрузки и содержимое корневой файловой системы

iMX53X подразумевает различные возможные источники загрузки, на плате предусмотрено два - NAND flash и USB

5.1. NAND flash

NAND flash разбита на две части:

- 1) 32M для хранения загрузчиков, ядра ситемы и смтемы загрузки «safe mode» 0-0x1000000 — область загрузчика
 - 0-0х1000000 область загрузчика
 - $0x1000000 0x1A00000 область хранения Safe системы (ядро со встроенной корневой <math>\Phi$ C)
 - 0х1А00000 0х2000000 область хранения ядра системы
- 2) 224M раздел UBI файловой системы, используется в качестве корневой файловой системы


5.2. USB

Загрузчик (нестираемый, располагаемый в самом процессоре), в случае отсутствия приложения на NAND flash (или разомкнут джампер «NAND CS»), переходит в режим загрузки по USB, для взаимодействия используется утилита MfgTool (из комплекта материалов к плате).

5.2.1 MFgTool

Распакуйте архив с программой, подключите плату USB кабелем к разъему X16 (J14 разомкнут!) с разорваным джампером «NAND CS» (J7) , включите питание. Далее необходимо установить драйвер из папки Drivers. Затем необходимо определить USB порт через который программа должна взаимодействовать с платой, для этого необходимо нажать кнопку «Scan Devices».

В результате манипуляций, при подключении платы, утилита MfgTool должна определять «FreeScale iMX53 USB BulkIO Device»:

После этого необходимо замкнуть джампер «NAND CS» (J7).

Для загрузки достаточно будет выбрать профиль «MX53 Linux Update» и нажать кнопку «Start»

6. Корневая файловая система

Корневая файловая система (ФС), в поставляемом варианте платы, хранится в NAND flash и монтируется во время загрузки, поэтому, следует внимательней относится к изменениям в скриптах загрузки системы.

Корневая ФС содержит набор базовых приложений (большинство из которых являются реализацией мультифункционального приложения BusyBox), содержит:

- HTTPD сервер HTTP
- FTPD сервер FTP
- Telnetd сервер Telnet
- TFTP утилита приема-передачи файлов по TFTP протоколу
- Z-modem утилиты (для обмена файлами через COM порт
- Microcom терминальная программа
- TS-lib набор утилит для операций с сенсорной панелью
- Memtester тест памяти
- Mplayer медиа-проигрыватель
- МС файловый менеджер
- Qt
- X11
- ...

На случай аварии корневой файловой системы, предусмотрен режим «Safe boot», для его активации необходимо прервать загрузку в U-boot (нажав на любую клавишу) и выполнить команду «run boot_safe». Загрузится образ системы, в котором корневая ФС расположена в памяти и можно будет приступить к ремонту основной корневой ФС, например, запустить скрипт «install_rootfs», в результате работы которого будет заново отформатирован второй раздел NAND flash, скопирован с TFTP сервера и распакован архив корневой ФС.

7. Виртуальная машина VMware

Для сборки ядра и корневой ФС используется виртуальная машина VMware с установленной ОС Ubuntu, в состав которой входят все исходные тексты, компилятор и утилиты для сборки (toolchain), скрипты. Так же в виртуальной машине установлены и настроены сервисы для удобства взаимодействия с «материнской» ОС и отладочной платой: SSH, FTP, TFTP, Samba (доступ к файлам по сети Microsoft).

Разархивируйте файл " SK-iM53_linux_build_machine.exe", установите VMware-player или VMware, откройте и проект виртуальной машины.

Для работы необходимо настроить сетевые интерфейсы (появляющиеся после установки VMware), присвоив им описываемые ниже IP адреса:

Eth0 (Bridget) с адресом 192.168.0.2, задуман для взаимодействие с платой, для загрузки образов по TFTP ... Т.е. для нормальной работы, потребуется присвоить IP адрес PC сетевой карты (к которой подключается отладочная плата) 192.168.0.1

Eth1 (Host-only) с адресом 192.168.2.2, задуман для взаимодействия с PC (т.к. Bridget интерфейс отключается при физически отключенном сетевом кабеле, в случае с прямым подключением платы к PC), в частности, для возможности копирования файлов из виртуальной системы. В свойствах сетевых устройств, этому виртуальному адаптеру нужно присвоить IP 192.168.2.1

После правильной настройки (и с подключенной платой) должны успешно проходить PING с PC по адресам 192.168.2.2, 192.168.0.2, 192.168.0.136.

После загрузки виртуальной машины ее не обязательно выключать, достаточно будет нажать кнопку паузы и во время следующего сеанса работы не придется ждать загрузки виртуальной ОС, но при этом, в некоторых случаях, нужно следить за системными временем, особенно при копировании новых файлов (имеющих более позднюю дату создания относительно системы) для сборки.

По умолчанию, в системе присутствует два пользователя:

• user, пароль 123456 (настоятельно рекомендую работать под этим пользователем, или создать нового, но не вести всю работу под root)

Суперпользователя root в виртуальной машине нет, для действий с его привилегиями можно пользоваться командами su или sudo.

После входа переключаемся на консоль (Ctrl+Alt+F(1-6)) (потребуется в опциях VMware освободить сочетание клавиш Ctrl+Alt - по умолчанию это выход из окна виртуальной машины), запускаем MidnightComander (mc).

Основная рабочая папка /home/user/src, содержимое:

- kernel содержит ядро системы, в корневой директории ядра лежат скрипты:
 menuconfig.sh служит для конфигурирования ядра системы штатной загрузки
 build.sh служит для сборки ядра штатной загрузки
- rootfs/nand_fs содержит корневую систему штатной загрузки собираемую с помошью buildroot, скрипт **build_system** собирает корневую ФС и копирует ее архив в /home/user/tftp папку. Для конфигурирования содержимого необходимо выполнить «make menuconfig», для сборки достаточно выполнить make.

- rootfs/safe_fs содержит корневую систему для safe загрузки, Для конфигурирования содержимого необходимо выполнить «make menuconfig», для сборки достаточно выполнить make.
- u-boot содержит загрузчик системы, в корневой директории лежат скрипты:
 build.sh собирает u-boot для загрузки системы с NAND flash и копирует бинарный образ в /home/user/tftp папку
 build_mfg.sh собирает u-boot для загрузки системы через USB и копирует бинарный образ в /home/user/tftp папку
- utils содержит дополнительные утилиты и скрипты

Например, необходимо обновить ядро Linux, для этого:

- запускаем скрипт /home/user/src/kernel/linux-2.6.XX/build.sh
- включаем/перезагружаем плату с подключенным Ethernet и RS232 кабелями
- прерываем в u-boot процесс загрузки нажатием любой клавишы
- выполняем "run system_update"

8. Общий принцип работы системы

После подачи питания (перезагрузки), процессор запускает первичный загрузчик (находится во внутренней не перепрограммируемой ROM) и по определенному алгоритму определяет наличие исполняемого кода во внешних носителях. Если приложение не найдено, процессор остается в режиме, который подразумевает взаимодействие с ним утилиты MfgTool.

Поскольку внешняя DDR3 (или любая другая память - не инициализирована), первое запускаемое приложение должно быть загрузчиком. Это приложение (загрузчик u-boot) в первую очередь должен проинициализировать внешнюю память (например, правильно настроить параметры DDR3), скопировать исполняемое приложение из внешней Flash памяти во внешнюю DDR3 память и передать ему управление.

Загрузчик u-boot обладает обширными возможностями, например, он умеет копировать файлы по TFTP, SD или SATA, поддерживает целый набор команд и режимов. В переменных окружения u-boot есть команда запуска, в которой указано, по какому адресу NAND flash следует прочитать образ ядра, куда этот образ памяти записать и по какому адресу запустить. Следующие сообщения консоли иллюстрируют этот процесс:

```
NAND read: device 0 offset 0x1000000, size 0xa00000 10485760 bytes read: OK \tt\#\# Booting kernel from Legacy Image at 70800000 ...
```

Перед запуском ядра Linux, оно первым делом проверяет контрольную сумму собственного архива и распаковывает себя (в случае safe загрузки, ядро включает в себя еще корневую ФС), иллюстрация:

```
## Booting kernel from Legacy Image at 70800000 ...
    Image Name: linux-2.6
    Image Type: ARM Linux Kernel Image (uncompressed)
    Data Size: 2455412 Bytes = 2.3 MB
    Load Address: 70008000
    Entry Point: 70008000
    Verifying Checksum ... OK
    Loading Kernel Image ... OK
OK
Starting kernel ...
```

Далее идет инициализация всей системы, драйверов, файловых систем, после чего управление передается скриптам начального запуска.